LibreOffice Module vcl (master)  1
dibtools.cxx
Go to the documentation of this file.
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3  * This file is part of the LibreOffice project.
4  *
5  * This Source Code Form is subject to the terms of the Mozilla Public
6  * License, v. 2.0. If a copy of the MPL was not distributed with this
7  * file, You can obtain one at http://mozilla.org/MPL/2.0/.
8  *
9  * This file incorporates work covered by the following license notice:
10  *
11  * Licensed to the Apache Software Foundation (ASF) under one or more
12  * contributor license agreements. See the NOTICE file distributed
13  * with this work for additional information regarding copyright
14  * ownership. The ASF licenses this file to you under the Apache
15  * License, Version 2.0 (the "License"); you may not use this file
16  * except in compliance with the License. You may obtain a copy of
17  * the License at http://www.apache.org/licenses/LICENSE-2.0 .
18  */
19 
20 #include <sal/config.h>
21 #include <sal/log.hxx>
22 
23 #include <cassert>
24 
25 #include <vcl/dibtools.hxx>
26 #include <comphelper/fileformat.h>
27 #include <tools/zcodec.hxx>
28 #include <tools/stream.hxx>
29 #include <tools/fract.hxx>
30 #include <tools/helpers.hxx>
32 #include <unotools/configmgr.hxx>
33 #include <vcl/bitmapex.hxx>
34 #include <vcl/bitmapaccess.hxx>
35 #include <vcl/outdev.hxx>
36 #include <bitmapwriteaccess.hxx>
37 #include <memory>
38 
39 #define DIBCOREHEADERSIZE ( 12UL )
40 #define DIBINFOHEADERSIZE ( sizeof(DIBInfoHeader) )
41 #define DIBV5HEADERSIZE ( sizeof(DIBV5Header) )
42 
43 // - DIBInfoHeader and DIBV5Header
44 
45 typedef sal_Int32 FXPT2DOT30;
46 
47 namespace
48 {
49 
50 struct CIEXYZ
51 {
52  FXPT2DOT30 aXyzX;
53  FXPT2DOT30 aXyzY;
54  FXPT2DOT30 aXyzZ;
55 
56  CIEXYZ()
57  : aXyzX(0),
58  aXyzY(0),
59  aXyzZ(0)
60  {}
61 };
62 
63 struct CIEXYZTriple
64 {
65  CIEXYZ aXyzRed;
66  CIEXYZ aXyzGreen;
67  CIEXYZ aXyzBlue;
68 
69  CIEXYZTriple()
70  : aXyzRed(),
71  aXyzGreen(),
72  aXyzBlue()
73  {}
74 };
75 
76 struct DIBInfoHeader
77 {
78  sal_uInt32 nSize;
79  sal_Int32 nWidth;
80  sal_Int32 nHeight;
81  sal_uInt16 nPlanes;
82  sal_uInt16 nBitCount;
83  sal_uInt32 nCompression;
84  sal_uInt32 nSizeImage;
85  sal_Int32 nXPelsPerMeter;
86  sal_Int32 nYPelsPerMeter;
87  sal_uInt32 nColsUsed;
88  sal_uInt32 nColsImportant;
89 
90  DIBInfoHeader()
91  : nSize(0),
92  nWidth(0),
93  nHeight(0),
94  nPlanes(0),
95  nBitCount(0),
96  nCompression(0),
97  nSizeImage(0),
98  nXPelsPerMeter(0),
99  nYPelsPerMeter(0),
100  nColsUsed(0),
101  nColsImportant(0)
102  {}
103 };
104 
105 struct DIBV5Header : public DIBInfoHeader
106 {
107  sal_uInt32 nV5RedMask;
108  sal_uInt32 nV5GreenMask;
109  sal_uInt32 nV5BlueMask;
110  sal_uInt32 nV5AlphaMask;
111  sal_uInt32 nV5CSType;
112  CIEXYZTriple aV5Endpoints;
113  sal_uInt32 nV5GammaRed;
114  sal_uInt32 nV5GammaGreen;
115  sal_uInt32 nV5GammaBlue;
116  sal_uInt32 nV5Intent;
117  sal_uInt32 nV5ProfileData;
118  sal_uInt32 nV5ProfileSize;
119  sal_uInt32 nV5Reserved;
120 
121  DIBV5Header()
122  : DIBInfoHeader(),
123  nV5RedMask(0),
124  nV5GreenMask(0),
125  nV5BlueMask(0),
126  nV5AlphaMask(0),
127  nV5CSType(0),
128  aV5Endpoints(),
129  nV5GammaRed(0),
130  nV5GammaGreen(0),
131  nV5GammaBlue(0),
132  nV5Intent(0),
133  nV5ProfileData(0),
134  nV5ProfileSize(0),
135  nV5Reserved(0)
136  {}
137 };
138 
139 sal_uInt16 discretizeBitcount( sal_uInt16 nInputCount )
140 {
141  return ( nInputCount <= 1 ) ? 1 :
142  ( nInputCount <= 4 ) ? 4 :
143  ( nInputCount <= 8 ) ? 8 : 24;
144 }
145 
146 bool isBitfieldCompression( ScanlineFormat nScanlineFormat )
147 {
148  return (ScanlineFormat::N16BitTcLsbMask == nScanlineFormat) || (ScanlineFormat::N32BitTcMask == nScanlineFormat);
149 }
150 
151 bool ImplReadDIBInfoHeader(SvStream& rIStm, DIBV5Header& rHeader, bool& bTopDown, bool bMSOFormat)
152 {
153  // BITMAPINFOHEADER or BITMAPCOREHEADER or BITMAPV5HEADER
154  sal_uInt64 const aStartPos(rIStm.Tell());
155  rIStm.ReadUInt32( rHeader.nSize );
156 
157  // BITMAPCOREHEADER
158  if ( rHeader.nSize == DIBCOREHEADERSIZE )
159  {
160  sal_Int16 nTmp16;
161 
162  rIStm.ReadInt16( nTmp16 ); rHeader.nWidth = nTmp16;
163  rIStm.ReadInt16( nTmp16 ); rHeader.nHeight = nTmp16;
164  rIStm.ReadUInt16( rHeader.nPlanes );
165  rIStm.ReadUInt16( rHeader.nBitCount );
166  }
167  else if ( bMSOFormat && rHeader.nSize == DIBINFOHEADERSIZE )
168  {
169  sal_Int16 nTmp16(0);
170  rIStm.ReadInt16(nTmp16);
171  rHeader.nWidth = nTmp16;
172  rIStm.ReadInt16(nTmp16);
173  rHeader.nHeight = nTmp16;
174  sal_uInt8 nTmp8(0);
175  rIStm.ReadUChar(nTmp8);
176  rHeader.nPlanes = nTmp8;
177  rIStm.ReadUChar(nTmp8);
178  rHeader.nBitCount = nTmp8;
179  rIStm.ReadInt16(nTmp16);
180  rHeader.nSizeImage = nTmp16;
181  rIStm.ReadInt16(nTmp16);
182  rHeader.nCompression = nTmp16;
183  if ( !rHeader.nSizeImage ) // uncompressed?
184  rHeader.nSizeImage = ((rHeader.nWidth * rHeader.nBitCount + 31) & ~31) / 8 * rHeader.nHeight;
185  rIStm.ReadInt32( rHeader.nXPelsPerMeter );
186  rIStm.ReadInt32( rHeader.nYPelsPerMeter );
187  rIStm.ReadUInt32( rHeader.nColsUsed );
188  rIStm.ReadUInt32( rHeader.nColsImportant );
189  }
190  else
191  {
192  // BITMAPCOREHEADER, BITMAPV5HEADER or unknown. Read as far as possible
193  std::size_t nUsed(sizeof(rHeader.nSize));
194 
195  auto readUInt16 = [&nUsed, &rHeader, &rIStm](sal_uInt16 & v) {
196  if (nUsed < rHeader.nSize) {
197  rIStm.ReadUInt16(v);
198  nUsed += sizeof(v);
199  }
200  };
201  auto readInt32 = [&nUsed, &rHeader, &rIStm](sal_Int32 & v) {
202  if (nUsed < rHeader.nSize) {
203  rIStm.ReadInt32(v);
204  nUsed += sizeof(v);
205  }
206  };
207  auto readUInt32 = [&nUsed, &rHeader, &rIStm](sal_uInt32 & v) {
208  if (nUsed < rHeader.nSize) {
209  rIStm.ReadUInt32(v);
210  nUsed += sizeof(v);
211  }
212  };
213 
214  // read DIBInfoHeader entries
215  readInt32( rHeader.nWidth );
216  readInt32( rHeader.nHeight );
217  readUInt16( rHeader.nPlanes );
218  readUInt16( rHeader.nBitCount );
219  readUInt32( rHeader.nCompression );
220  readUInt32( rHeader.nSizeImage );
221  readInt32( rHeader.nXPelsPerMeter );
222  readInt32( rHeader.nYPelsPerMeter );
223  readUInt32( rHeader.nColsUsed );
224  readUInt32( rHeader.nColsImportant );
225 
226  // read DIBV5HEADER members
227  readUInt32( rHeader.nV5RedMask );
228  readUInt32( rHeader.nV5GreenMask );
229  readUInt32( rHeader.nV5BlueMask );
230  readUInt32( rHeader.nV5AlphaMask );
231  readUInt32( rHeader.nV5CSType );
232 
233  // read contained CIEXYZTriple's
234  readInt32( rHeader.aV5Endpoints.aXyzRed.aXyzX );
235  readInt32( rHeader.aV5Endpoints.aXyzRed.aXyzY );
236  readInt32( rHeader.aV5Endpoints.aXyzRed.aXyzZ );
237  readInt32( rHeader.aV5Endpoints.aXyzGreen.aXyzX );
238  readInt32( rHeader.aV5Endpoints.aXyzGreen.aXyzY );
239  readInt32( rHeader.aV5Endpoints.aXyzGreen.aXyzZ );
240  readInt32( rHeader.aV5Endpoints.aXyzBlue.aXyzX );
241  readInt32( rHeader.aV5Endpoints.aXyzBlue.aXyzY );
242  readInt32( rHeader.aV5Endpoints.aXyzBlue.aXyzZ );
243 
244  readUInt32( rHeader.nV5GammaRed );
245  readUInt32( rHeader.nV5GammaGreen );
246  readUInt32( rHeader.nV5GammaBlue );
247  readUInt32( rHeader.nV5Intent );
248  readUInt32( rHeader.nV5ProfileData );
249  readUInt32( rHeader.nV5ProfileSize );
250  readUInt32( rHeader.nV5Reserved );
251 
252  // seek to EndPos
253  if (!checkSeek(rIStm, aStartPos + rHeader.nSize))
254  return false;
255  }
256 
257  if (rHeader.nHeight == SAL_MIN_INT32)
258  return false;
259 
260  if ( rHeader.nHeight < 0 )
261  {
262  bTopDown = true;
263  rHeader.nHeight *= -1;
264  }
265  else
266  {
267  bTopDown = false;
268  }
269 
270  if ( rHeader.nWidth < 0 || rHeader.nXPelsPerMeter < 0 || rHeader.nYPelsPerMeter < 0 )
271  {
273  }
274 
275  // #144105# protect a little against damaged files
276  assert(rHeader.nHeight >= 0);
277  if (rHeader.nHeight != 0 && rHeader.nWidth >= 0
278  && (rHeader.nSizeImage / 16 / static_cast<sal_uInt32>(rHeader.nHeight)
279  > static_cast<sal_uInt32>(rHeader.nWidth)))
280  {
281  rHeader.nSizeImage = 0;
282  }
283 
284 
285  if (rHeader.nPlanes != 1)
286  return false;
287 
288  if (rHeader.nBitCount != 0 && rHeader.nBitCount != 1 &&
289  rHeader.nBitCount != 4 && rHeader.nBitCount != 8 &&
290  rHeader.nBitCount != 16 && rHeader.nBitCount != 24 &&
291  rHeader.nBitCount != 32)
292  {
293  return false;
294  }
295 
296  return rIStm.good();
297 }
298 
299 bool ImplReadDIBPalette(SvStream& rIStm, BitmapPalette& rPal, bool bQuad)
300 {
301  const sal_uInt16 nColors = rPal.GetEntryCount();
302  const sal_uLong nPalSize = nColors * ( bQuad ? 4UL : 3UL );
303  BitmapColor aPalColor;
304 
305  std::unique_ptr<sal_uInt8[]> pEntries(new sal_uInt8[ nPalSize ]);
306  if (rIStm.ReadBytes(pEntries.get(), nPalSize) != nPalSize)
307  {
308  return false;
309  }
310 
311  sal_uInt8* pTmpEntry = pEntries.get();
312  for( sal_uInt16 i = 0; i < nColors; i++ )
313  {
314  aPalColor.SetBlue( *pTmpEntry++ );
315  aPalColor.SetGreen( *pTmpEntry++ );
316  aPalColor.SetRed( *pTmpEntry++ );
317 
318  if( bQuad )
319  pTmpEntry++;
320 
321  rPal[i] = aPalColor;
322  }
323 
324  return rIStm.GetError() == ERRCODE_NONE;
325 }
326 
327 BitmapColor SanitizePaletteIndex(sal_uInt8 nIndex, BitmapPalette& rPalette, bool bForceToMonoWhileReading)
328 {
329  const sal_uInt16 nPaletteEntryCount = rPalette.GetEntryCount();
330  if (nPaletteEntryCount && nIndex >= nPaletteEntryCount)
331  {
332  auto nSanitizedIndex = nIndex % nPaletteEntryCount;
333  SAL_WARN_IF(nIndex != nSanitizedIndex, "vcl", "invalid colormap index: "
334  << static_cast<unsigned int>(nIndex) << ", colormap len is: "
335  << nPaletteEntryCount);
336  nIndex = nSanitizedIndex;
337  }
338 
339  if (nPaletteEntryCount && bForceToMonoWhileReading)
340  {
341  return BitmapColor(static_cast<sal_uInt8>(rPalette[nIndex].GetLuminance() >= 255));
342  }
343 
344  return BitmapColor(nIndex);
345 }
346 
347 BitmapColor SanitizeColor(const BitmapColor &rColor, bool bForceToMonoWhileReading)
348 {
349  if (!bForceToMonoWhileReading)
350  return rColor;
351  return BitmapColor(static_cast<sal_uInt8>(rColor.GetLuminance() >= 255));
352 }
353 
354 bool ImplDecodeRLE(sal_uInt8* pBuffer, DIBV5Header const & rHeader, BitmapWriteAccess& rAcc, BitmapPalette& rPalette, bool bForceToMonoWhileReading, bool bRLE4)
355 {
356  Scanline pRLE = pBuffer;
357  Scanline pEndRLE = pBuffer + rHeader.nSizeImage;
358  long nY = rHeader.nHeight - 1;
359  const sal_uLong nWidth = rAcc.Width();
360  sal_uLong nCountByte;
361  sal_uLong nRunByte;
362  sal_uLong nX = 0;
363  sal_uInt8 cTmp;
364  bool bEndDecoding = false;
365 
366  do
367  {
368  if (pRLE == pEndRLE)
369  return false;
370  if( ( nCountByte = *pRLE++ ) == 0 )
371  {
372  if (pRLE == pEndRLE)
373  return false;
374  nRunByte = *pRLE++;
375 
376  if( nRunByte > 2 )
377  {
378  Scanline pScanline = rAcc.GetScanline(nY);
379  if( bRLE4 )
380  {
381  nCountByte = nRunByte >> 1;
382 
383  for( sal_uLong i = 0; i < nCountByte; i++ )
384  {
385  if (pRLE == pEndRLE)
386  return false;
387 
388  cTmp = *pRLE++;
389 
390  if( nX < nWidth )
391  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp >> 4, rPalette, bForceToMonoWhileReading));
392 
393  if( nX < nWidth )
394  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp & 0x0f, rPalette, bForceToMonoWhileReading));
395  }
396 
397  if( nRunByte & 1 )
398  {
399  if (pRLE == pEndRLE)
400  return false;
401 
402  if( nX < nWidth )
403  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(*pRLE >> 4, rPalette, bForceToMonoWhileReading));
404 
405  pRLE++;
406  }
407 
408  if( ( ( nRunByte + 1 ) >> 1 ) & 1 )
409  {
410  if (pRLE == pEndRLE)
411  return false;
412 
413  pRLE++;
414  }
415  }
416  else
417  {
418  for( sal_uLong i = 0; i < nRunByte; i++ )
419  {
420  if (pRLE == pEndRLE)
421  return false;
422 
423  if( nX < nWidth )
424  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(*pRLE, rPalette, bForceToMonoWhileReading));
425 
426  pRLE++;
427  }
428 
429  if( nRunByte & 1 )
430  {
431  if (pRLE == pEndRLE)
432  return false;
433 
434  pRLE++;
435  }
436  }
437  }
438  else if( !nRunByte )
439  {
440  nY--;
441  nX = 0;
442  }
443  else if( nRunByte == 1 )
444  bEndDecoding = true;
445  else
446  {
447  if (pRLE == pEndRLE)
448  return false;
449 
450  nX += *pRLE++;
451 
452  if (pRLE == pEndRLE)
453  return false;
454 
455  nY -= *pRLE++;
456  }
457  }
458  else
459  {
460  if (pRLE == pEndRLE)
461  return false;
462  cTmp = *pRLE++;
463 
464  Scanline pScanline = rAcc.GetScanline(nY);
465  if( bRLE4 )
466  {
467  nRunByte = nCountByte >> 1;
468 
469  for( sal_uLong i = 0; i < nRunByte; i++ )
470  {
471  if( nX < nWidth )
472  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp >> 4, rPalette, bForceToMonoWhileReading));
473 
474  if( nX < nWidth )
475  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp & 0x0f, rPalette, bForceToMonoWhileReading));
476  }
477 
478  if( ( nCountByte & 1 ) && ( nX < nWidth ) )
479  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp >> 4, rPalette, bForceToMonoWhileReading));
480  }
481  else
482  {
483  for( sal_uLong i = 0; ( i < nCountByte ) && ( nX < nWidth ); i++ )
484  rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp, rPalette, bForceToMonoWhileReading));
485  }
486  }
487  }
488  while (!bEndDecoding && (nY >= 0));
489 
490  return true;
491 }
492 
493 bool ImplReadDIBBits(SvStream& rIStm, DIBV5Header& rHeader, BitmapWriteAccess& rAcc, BitmapPalette& rPalette, BitmapWriteAccess* pAccAlpha,
494  bool bTopDown, bool& rAlphaUsed, const sal_uInt64 nAlignedWidth,
495  const bool bForceToMonoWhileReading)
496 {
497  sal_uInt32 nRMask(( rHeader.nBitCount == 16 ) ? 0x00007c00UL : 0x00ff0000UL);
498  sal_uInt32 nGMask(( rHeader.nBitCount == 16 ) ? 0x000003e0UL : 0x0000ff00UL);
499  sal_uInt32 nBMask(( rHeader.nBitCount == 16 ) ? 0x0000001fUL : 0x000000ffUL);
500  bool bNative(false);
501  bool bTCMask(!pAccAlpha && ((16 == rHeader.nBitCount) || (32 == rHeader.nBitCount)));
502  bool bRLE((RLE_8 == rHeader.nCompression && 8 == rHeader.nBitCount) || (RLE_4 == rHeader.nCompression && 4 == rHeader.nBitCount));
503 
504  // Is native format?
505  switch(rAcc.GetScanlineFormat())
506  {
509  {
510  // we can't trust arbitrary-sourced index based formats to have correct indexes, so we exclude the pal formats
511  // from raw read and force checking their colormap indexes
512  bNative = ( ( rAcc.IsBottomUp() != bTopDown ) && !bRLE && !bTCMask && ( rAcc.GetScanlineSize() == nAlignedWidth ) );
513  break;
514  }
515 
516  default:
517  {
518  break;
519  }
520  }
521 
522  // Read data
523  if (bNative)
524  {
525  if (nAlignedWidth
526  > std::numeric_limits<std::size_t>::max() / rHeader.nHeight)
527  {
528  return false;
529  }
530  std::size_t n = nAlignedWidth * rHeader.nHeight;
531  if (rIStm.ReadBytes(rAcc.GetBuffer(), n) != n)
532  {
533  return false;
534  }
535  }
536  else
537  {
538  // Read color mask
539  if(bTCMask && BITFIELDS == rHeader.nCompression)
540  {
541  rIStm.SeekRel( -12 );
542  rIStm.ReadUInt32( nRMask );
543  rIStm.ReadUInt32( nGMask );
544  rIStm.ReadUInt32( nBMask );
545  }
546 
547  const long nWidth(rHeader.nWidth);
548  const long nHeight(rHeader.nHeight);
549  long nResult = 0;
550  if (utl::ConfigManager::IsFuzzing() && (o3tl::checked_multiply(nWidth, nHeight, nResult) || nResult > 4000000))
551  return false;
552 
553  if (bRLE)
554  {
555  if(!rHeader.nSizeImage)
556  {
557  rHeader.nSizeImage = rIStm.remainingSize();
558  }
559 
560  if (rHeader.nSizeImage > rIStm.remainingSize())
561  return false;
562  std::vector<sal_uInt8> aBuffer(rHeader.nSizeImage);
563  if (rIStm.ReadBytes(aBuffer.data(), rHeader.nSizeImage) != rHeader.nSizeImage)
564  return false;
565  if (!ImplDecodeRLE(aBuffer.data(), rHeader, rAcc, rPalette, bForceToMonoWhileReading, RLE_4 == rHeader.nCompression))
566  return false;
567  }
568  else
569  {
570  if (nAlignedWidth > rIStm.remainingSize())
571  {
572  // ofz#11188 avoid timeout
573  // all following paths will enter a case statement, and nCount
574  // is always at least 1, so we can check here before allocation
575  // if at least one row can be read
576  return false;
577  }
578  std::vector<sal_uInt8> aBuf(nAlignedWidth);
579 
580  const long nI(bTopDown ? 1 : -1);
581  long nY(bTopDown ? 0 : nHeight - 1);
582  long nCount(nHeight);
583 
584  switch(rHeader.nBitCount)
585  {
586  case 1:
587  {
588  for( ; nCount--; nY += nI )
589  {
590  sal_uInt8 * pTmp = aBuf.data();
591  if (rIStm.ReadBytes(pTmp, nAlignedWidth)
592  != nAlignedWidth)
593  {
594  return false;
595  }
596  sal_uInt8 cTmp = *pTmp++;
597  Scanline pScanline = rAcc.GetScanline(nY);
598  for( long nX = 0, nShift = 8; nX < nWidth; nX++ )
599  {
600  if( !nShift )
601  {
602  nShift = 8;
603  cTmp = *pTmp++;
604  }
605 
606  auto nIndex = (cTmp >> --nShift) & 1;
607  rAcc.SetPixelOnData(pScanline, nX, SanitizePaletteIndex(nIndex, rPalette, bForceToMonoWhileReading));
608  }
609  }
610  }
611  break;
612 
613  case 4:
614  {
615  for( ; nCount--; nY += nI )
616  {
617  sal_uInt8 * pTmp = aBuf.data();
618  if (rIStm.ReadBytes(pTmp, nAlignedWidth)
619  != nAlignedWidth)
620  {
621  return false;
622  }
623  sal_uInt8 cTmp = *pTmp++;
624  Scanline pScanline = rAcc.GetScanline(nY);
625  for( long nX = 0, nShift = 2; nX < nWidth; nX++ )
626  {
627  if( !nShift )
628  {
629  nShift = 2;
630  cTmp = *pTmp++;
631  }
632 
633  auto nIndex = (cTmp >> ( --nShift << 2 ) ) & 0x0f;
634  rAcc.SetPixelOnData(pScanline, nX, SanitizePaletteIndex(nIndex, rPalette, bForceToMonoWhileReading));
635  }
636  }
637  }
638  break;
639 
640  case 8:
641  {
642  for( ; nCount--; nY += nI )
643  {
644  sal_uInt8 * pTmp = aBuf.data();
645  if (rIStm.ReadBytes(pTmp, nAlignedWidth)
646  != nAlignedWidth)
647  {
648  return false;
649  }
650 
651  Scanline pScanline = rAcc.GetScanline(nY);
652  for( long nX = 0; nX < nWidth; nX++ )
653  {
654  auto nIndex = *pTmp++;
655  rAcc.SetPixelOnData(pScanline, nX, SanitizePaletteIndex(nIndex, rPalette, bForceToMonoWhileReading));
656  }
657  }
658  }
659  break;
660 
661  case 16:
662  {
663  ColorMaskElement aRedMask(nRMask);
664  if (!aRedMask.CalcMaskShift())
665  return false;
666  ColorMaskElement aGreenMask(nGMask);
667  if (!aGreenMask.CalcMaskShift())
668  return false;
669  ColorMaskElement aBlueMask(nBMask);
670  if (!aBlueMask.CalcMaskShift())
671  return false;
672 
673  ColorMask aMask(aRedMask, aGreenMask, aBlueMask);
674  BitmapColor aColor;
675 
676  for( ; nCount--; nY += nI )
677  {
678  sal_uInt16 * pTmp16 = reinterpret_cast<sal_uInt16*>(aBuf.data());
679  if (rIStm.ReadBytes(pTmp16, nAlignedWidth)
680  != nAlignedWidth)
681  {
682  return false;
683  }
684 
685  Scanline pScanline = rAcc.GetScanline(nY);
686  for( long nX = 0; nX < nWidth; nX++ )
687  {
688  aMask.GetColorFor16BitLSB( aColor, reinterpret_cast<sal_uInt8*>(pTmp16++) );
689  rAcc.SetPixelOnData(pScanline, nX, SanitizeColor(aColor, bForceToMonoWhileReading));
690  }
691  }
692  }
693  break;
694 
695  case 24:
696  {
697  BitmapColor aPixelColor;
698 
699  for( ; nCount--; nY += nI )
700  {
701  sal_uInt8* pTmp = aBuf.data();
702  if (rIStm.ReadBytes(pTmp, nAlignedWidth)
703  != nAlignedWidth)
704  {
705  return false;
706  }
707 
708  Scanline pScanline = rAcc.GetScanline(nY);
709  for( long nX = 0; nX < nWidth; nX++ )
710  {
711  aPixelColor.SetBlue( *pTmp++ );
712  aPixelColor.SetGreen( *pTmp++ );
713  aPixelColor.SetRed( *pTmp++ );
714  rAcc.SetPixelOnData(pScanline, nX, SanitizeColor(aPixelColor, bForceToMonoWhileReading));
715  }
716  }
717  }
718  break;
719 
720  case 32:
721  {
722  ColorMaskElement aRedMask(nRMask);
723  if (!aRedMask.CalcMaskShift())
724  return false;
725  ColorMaskElement aGreenMask(nGMask);
726  if (!aGreenMask.CalcMaskShift())
727  return false;
728  ColorMaskElement aBlueMask(nBMask);
729  if (!aBlueMask.CalcMaskShift())
730  return false;
731  ColorMask aMask(aRedMask, aGreenMask, aBlueMask);
732 
733  BitmapColor aColor;
734  sal_uInt32* pTmp32;
735 
736  if(pAccAlpha)
737  {
738  sal_uInt8 aAlpha;
739 
740  for( ; nCount--; nY += nI )
741  {
742  pTmp32 = reinterpret_cast<sal_uInt32*>(aBuf.data());
743  if (rIStm.ReadBytes(pTmp32, nAlignedWidth)
744  != nAlignedWidth)
745  {
746  return false;
747  }
748 
749  Scanline pScanline = rAcc.GetScanline(nY);
750  Scanline pAlphaScanline = pAccAlpha->GetScanline(nY);
751  for( long nX = 0; nX < nWidth; nX++ )
752  {
753  aMask.GetColorAndAlphaFor32Bit( aColor, aAlpha, reinterpret_cast<sal_uInt8*>(pTmp32++) );
754  rAcc.SetPixelOnData(pScanline, nX, SanitizeColor(aColor, bForceToMonoWhileReading));
755  pAccAlpha->SetPixelOnData(pAlphaScanline, nX, BitmapColor(sal_uInt8(0xff) - aAlpha));
756  rAlphaUsed |= 0xff != aAlpha;
757  }
758  }
759  }
760  else
761  {
762  for( ; nCount--; nY += nI )
763  {
764  pTmp32 = reinterpret_cast<sal_uInt32*>(aBuf.data());
765  if (rIStm.ReadBytes(pTmp32, nAlignedWidth)
766  != nAlignedWidth)
767  {
768  return false;
769  }
770 
771  Scanline pScanline = rAcc.GetScanline(nY);
772  for( long nX = 0; nX < nWidth; nX++ )
773  {
774  aMask.GetColorFor32Bit( aColor, reinterpret_cast<sal_uInt8*>(pTmp32++) );
775  rAcc.SetPixelOnData(pScanline, nX, SanitizeColor(aColor, bForceToMonoWhileReading));
776  }
777  }
778  }
779  }
780  }
781  }
782  }
783 
784  return rIStm.GetError() == ERRCODE_NONE;
785 }
786 
787 bool ImplReadDIBBody(SvStream& rIStm, Bitmap& rBmp, AlphaMask* pBmpAlpha, sal_uLong nOffset, bool bIsMask, bool bMSOFormat)
788 {
789  DIBV5Header aHeader;
790  const sal_uLong nStmPos = rIStm.Tell();
791  bool bTopDown(false);
792 
793  if (!ImplReadDIBInfoHeader(rIStm, aHeader, bTopDown, bMSOFormat))
794  return false;
795 
796  //BI_BITCOUNT_0 jpeg/png is unsupported
797  if (aHeader.nBitCount == 0)
798  return false;
799 
800  if (aHeader.nWidth <= 0 || aHeader.nHeight <= 0)
801  return false;
802 
803  // In case ImplReadDIB() didn't call ImplReadDIBFileHeader() before
804  // this method, nOffset is 0, that's OK.
805  if (nOffset && aHeader.nSize > nOffset)
806  {
807  // Header size claims to extend into the image data.
808  // Looks like an error.
809  return false;
810  }
811 
812  sal_uInt16 nColors(0);
813  SvStream* pIStm;
814  std::unique_ptr<SvMemoryStream> pMemStm;
815  std::vector<sal_uInt8> aData;
816 
817  if (aHeader.nBitCount <= 8)
818  {
819  if(aHeader.nColsUsed)
820  {
821  nColors = static_cast<sal_uInt16>(aHeader.nColsUsed);
822  }
823  else
824  {
825  nColors = ( 1 << aHeader.nBitCount );
826  }
827  }
828 
829  if (ZCOMPRESS == aHeader.nCompression)
830  {
831  sal_uInt32 nCodedSize(0);
832  sal_uInt32 nUncodedSize(0);
833 
834  // read coding information
835  rIStm.ReadUInt32( nCodedSize ).ReadUInt32( nUncodedSize ).ReadUInt32( aHeader.nCompression );
836  if (nCodedSize > rIStm.remainingSize())
837  nCodedSize = sal_uInt32(rIStm.remainingSize());
838 
839  pMemStm.reset(new SvMemoryStream);
840  // There may be bytes left over or the codec might read more than
841  // necessary. So to preserve the correctness of the source stream copy
842  // the encoded block
843  pMemStm->WriteStream(rIStm, nCodedSize);
844  pMemStm->Seek(0);
845 
846  size_t nSizeInc(4 * pMemStm->remainingSize());
847  if (nUncodedSize < nSizeInc)
848  nSizeInc = nUncodedSize;
849 
850  if (nSizeInc > 0)
851  {
852  // decode buffer
853  ZCodec aCodec;
854  aCodec.BeginCompression();
855  aData.resize(nSizeInc);
856  size_t nDataPos(0);
857  while (nUncodedSize > nDataPos)
858  {
859  assert(aData.size() > nDataPos);
860  const size_t nToRead(std::min<size_t>(nUncodedSize - nDataPos, aData.size() - nDataPos));
861  assert(nToRead > 0);
862  assert(!aData.empty());
863  const long nRead = aCodec.Read(*pMemStm, aData.data() + nDataPos, sal_uInt32(nToRead));
864  if (nRead > 0)
865  {
866  nDataPos += static_cast<unsigned long>(nRead);
867  // we haven't read everything yet: resize buffer and continue
868  if (nDataPos < nUncodedSize)
869  aData.resize(aData.size() + nSizeInc);
870  }
871  else
872  {
873  break;
874  }
875  }
876  // truncate the data buffer to actually read size
877  aData.resize(nDataPos);
878  // set the real uncoded size
879  nUncodedSize = sal_uInt32(aData.size());
880  aCodec.EndCompression();
881  }
882 
883  if (aData.empty())
884  {
885  // add something so we can take address of the first element
886  aData.resize(1);
887  nUncodedSize = 0;
888  }
889 
890  // set decoded bytes to memory stream,
891  // from which we will read the bitmap data
892  pMemStm.reset(new SvMemoryStream);
893  pIStm = pMemStm.get();
894  assert(!aData.empty());
895  pMemStm->SetBuffer(aData.data(), nUncodedSize, nUncodedSize);
896  nOffset = 0;
897  }
898  else
899  {
900  pIStm = &rIStm;
901  }
902 
903  // read palette
904  BitmapPalette aPalette;
905  if (nColors)
906  {
907  aPalette.SetEntryCount(nColors);
908  ImplReadDIBPalette(*pIStm, aPalette, aHeader.nSize != DIBCOREHEADERSIZE);
909  }
910 
911  if (pIStm->GetError())
912  return false;
913 
914  if (nOffset)
915  {
916  pIStm->SeekRel(nOffset - (pIStm->Tell() - nStmPos));
917  }
918 
919  const sal_Int64 nBitsPerLine (static_cast<sal_Int64>(aHeader.nWidth) * static_cast<sal_Int64>(aHeader.nBitCount));
920  if (nBitsPerLine > SAL_MAX_UINT32)
921  return false;
922  const sal_uInt64 nAlignedWidth(AlignedWidth4Bytes(static_cast<sal_uLong>(nBitsPerLine)));
923 
924  switch (aHeader.nCompression)
925  {
926  case RLE_8:
927  {
928  if (aHeader.nBitCount != 8)
929  return false;
930  // (partially) check the image dimensions to avoid potential large bitmap allocation if the input is damaged
931  sal_uInt64 nMaxWidth = pIStm->remainingSize();
932  nMaxWidth *= 256; //assume generous compression ratio
933  nMaxWidth /= aHeader.nHeight;
934  if (nMaxWidth < static_cast<sal_uInt64>(aHeader.nWidth))
935  return false;
936  break;
937  }
938  case RLE_4:
939  {
940  if (aHeader.nBitCount != 4)
941  return false;
942  sal_uInt64 nMaxWidth = pIStm->remainingSize();
943  nMaxWidth *= 512; //assume generous compression ratio
944  nMaxWidth /= aHeader.nHeight;
945  if (nMaxWidth < static_cast<sal_uInt64>(aHeader.nWidth))
946  return false;
947  break;
948  }
949  default:
950  // tdf#122958 invalid compression value used
951  if (aHeader.nCompression & 0x000F)
952  {
953  // lets assume that there was an error in the generating application
954  // and allow through as COMPRESS_NONE if the bottom byte is 0
955  SAL_WARN( "vcl", "bad bmp compression scheme: " << aHeader.nCompression << ", rejecting bmp");
956  return false;
957  }
958  else
959  SAL_WARN( "vcl", "bad bmp compression scheme: " << aHeader.nCompression << ", assuming meant to be COMPRESS_NONE");
960  [[fallthrough]];
961  case BITFIELDS:
962  case ZCOMPRESS:
963  case COMPRESS_NONE:
964  {
965  // (partially) check the image dimensions to avoid potential large bitmap allocation if the input is damaged
966  sal_uInt64 nMaxWidth = pIStm->remainingSize();
967  nMaxWidth /= aHeader.nHeight;
968  if (nMaxWidth < nAlignedWidth)
969  return false;
970  break;
971  }
972  }
973 
974  const Size aSizePixel(aHeader.nWidth, aHeader.nHeight);
975  AlphaMask aNewBmpAlpha;
976  AlphaScopedWriteAccess pAccAlpha;
977  bool bAlphaPossible(pBmpAlpha && aHeader.nBitCount == 32);
978 
979  if (bAlphaPossible)
980  {
981  const bool bRedSet(0 != aHeader.nV5RedMask);
982  const bool bGreenSet(0 != aHeader.nV5GreenMask);
983  const bool bBlueSet(0 != aHeader.nV5BlueMask);
984 
985  // some clipboard entries have alpha mask on zero to say that there is
986  // no alpha; do only use this when the other masks are set. The MS docu
987  // says that masks are only to be set when bV5Compression is set to
988  // BI_BITFIELDS, but there seem to exist a wild variety of usages...
989  if((bRedSet || bGreenSet || bBlueSet) && (0 == aHeader.nV5AlphaMask))
990  {
991  bAlphaPossible = false;
992  }
993  }
994 
995  if (bAlphaPossible)
996  {
997  aNewBmpAlpha = AlphaMask(aSizePixel);
998  pAccAlpha = AlphaScopedWriteAccess(aNewBmpAlpha);
999  }
1000 
1001  sal_uInt16 nBitCount(discretizeBitcount(aHeader.nBitCount));
1002  const BitmapPalette* pPal = &aPalette;
1003  //ofz#948 match the surrounding logic of case TransparentType::Bitmap of
1004  //ReadDIBBitmapEx but do it while reading for performance
1005  const bool bIsAlpha = (nBitCount == 8 && !!aPalette && aPalette.IsGreyPalette());
1006  const bool bForceToMonoWhileReading = (bIsMask && !bIsAlpha && nBitCount != 1);
1007  if (bForceToMonoWhileReading)
1008  {
1009  pPal = nullptr;
1010  nBitCount = 1;
1011  SAL_WARN( "vcl", "forcing mask to monochrome");
1012  }
1013 
1014  Bitmap aNewBmp(aSizePixel, nBitCount, pPal);
1015  BitmapScopedWriteAccess pAcc(aNewBmp);
1016  if (!pAcc)
1017  return false;
1018  if (pAcc->Width() != aHeader.nWidth || pAcc->Height() != aHeader.nHeight)
1019  {
1020  return false;
1021  }
1022 
1023  // read bits
1024  bool bAlphaUsed(false);
1025  bool bRet = ImplReadDIBBits(*pIStm, aHeader, *pAcc, aPalette, pAccAlpha.get(), bTopDown, bAlphaUsed, nAlignedWidth, bForceToMonoWhileReading);
1026 
1027  if (bRet && aHeader.nXPelsPerMeter && aHeader.nYPelsPerMeter)
1028  {
1029  MapMode aMapMode(
1030  MapUnit::MapMM,
1031  Point(),
1032  Fraction(1000, aHeader.nXPelsPerMeter),
1033  Fraction(1000, aHeader.nYPelsPerMeter));
1034 
1035  aNewBmp.SetPrefMapMode(aMapMode);
1036  aNewBmp.SetPrefSize(Size(aHeader.nWidth, aHeader.nHeight));
1037  }
1038 
1039  pAcc.reset();
1040 
1041  if (bAlphaPossible)
1042  {
1043  pAccAlpha.reset();
1044 
1045  if(!bAlphaUsed)
1046  {
1047  bAlphaPossible = false;
1048  }
1049  }
1050 
1051  if (bRet)
1052  {
1053  rBmp = aNewBmp;
1054 
1055  if(bAlphaPossible)
1056  {
1057  *pBmpAlpha = aNewBmpAlpha;
1058  }
1059  }
1060 
1061  return bRet;
1062 }
1063 
1064 bool ImplReadDIBFileHeader( SvStream& rIStm, sal_uLong& rOffset )
1065 {
1066  bool bRet = false;
1067 
1068  const sal_uInt64 nStreamLength = rIStm.TellEnd();
1069 
1070  sal_uInt16 nTmp16 = 0;
1071  rIStm.ReadUInt16( nTmp16 );
1072 
1073  if ( ( 0x4D42 == nTmp16 ) || ( 0x4142 == nTmp16 ) )
1074  {
1075  sal_uInt32 nTmp32(0);
1076  if ( 0x4142 == nTmp16 )
1077  {
1078  rIStm.SeekRel( 12 );
1079  rIStm.ReadUInt16( nTmp16 );
1080  rIStm.SeekRel( 8 );
1081  rIStm.ReadUInt32( nTmp32 );
1082  rOffset = nTmp32 - 28;
1083  bRet = ( 0x4D42 == nTmp16 );
1084  }
1085  else // 0x4D42 == nTmp16, 'MB' from BITMAPFILEHEADER
1086  {
1087  rIStm.SeekRel( 8 ); // we are on bfSize member of BITMAPFILEHEADER, forward to bfOffBits
1088  rIStm.ReadUInt32( nTmp32 ); // read bfOffBits
1089  rOffset = nTmp32 - 14; // adapt offset by sizeof(BITMAPFILEHEADER)
1090  bRet = rIStm.GetError() == ERRCODE_NONE;
1091  }
1092 
1093  if ( rOffset >= nStreamLength )
1094  {
1095  // Offset claims that image starts past the end of the
1096  // stream. Unlikely.
1098  bRet = false;
1099  }
1100  }
1101  else
1103 
1104  return bRet;
1105 }
1106 
1107 bool ImplWriteDIBPalette( SvStream& rOStm, BitmapReadAccess const & rAcc )
1108 {
1109  const sal_uInt16 nColors = rAcc.GetPaletteEntryCount();
1110  const sal_uLong nPalSize = nColors * 4UL;
1111  std::unique_ptr<sal_uInt8[]> pEntries(new sal_uInt8[ nPalSize ]);
1112  sal_uInt8* pTmpEntry = pEntries.get();
1113  BitmapColor aPalColor;
1114 
1115  for( sal_uInt16 i = 0; i < nColors; i++ )
1116  {
1117  const BitmapColor& rPalColor = rAcc.GetPaletteColor( i );
1118 
1119  *pTmpEntry++ = rPalColor.GetBlue();
1120  *pTmpEntry++ = rPalColor.GetGreen();
1121  *pTmpEntry++ = rPalColor.GetRed();
1122  *pTmpEntry++ = 0;
1123  }
1124 
1125  rOStm.WriteBytes( pEntries.get(), nPalSize );
1126 
1127  return rOStm.GetError() == ERRCODE_NONE;
1128 }
1129 
1130 bool ImplWriteRLE( SvStream& rOStm, BitmapReadAccess const & rAcc, bool bRLE4 )
1131 {
1132  const sal_uLong nWidth = rAcc.Width();
1133  const sal_uLong nHeight = rAcc.Height();
1134  sal_uLong nX;
1135  sal_uLong nSaveIndex;
1136  sal_uLong nCount;
1137  sal_uLong nBufCount;
1138  std::vector<sal_uInt8> aBuf(( nWidth << 1 ) + 2);
1139  sal_uInt8 cPix;
1140  sal_uInt8 cLast;
1141  bool bFound;
1142 
1143  for ( long nY = nHeight - 1; nY >= 0; nY-- )
1144  {
1145  sal_uInt8* pTmp = aBuf.data();
1146  nX = nBufCount = 0;
1147  Scanline pScanline = rAcc.GetScanline( nY );
1148 
1149  while( nX < nWidth )
1150  {
1151  nCount = 1;
1152  cPix = rAcc.GetIndexFromData( pScanline, nX++ );
1153 
1154  while( ( nX < nWidth ) && ( nCount < 255 )
1155  && ( cPix == rAcc.GetIndexFromData( pScanline, nX ) ) )
1156  {
1157  nX++;
1158  nCount++;
1159  }
1160 
1161  if ( nCount > 1 )
1162  {
1163  *pTmp++ = static_cast<sal_uInt8>(nCount);
1164  *pTmp++ = ( bRLE4 ? ( ( cPix << 4 ) | cPix ) : cPix );
1165  nBufCount += 2;
1166  }
1167  else
1168  {
1169  cLast = cPix;
1170  nSaveIndex = nX - 1;
1171  bFound = false;
1172 
1173  while( ( nX < nWidth ) && ( nCount < 256 )
1174  && ( cPix = rAcc.GetIndexFromData( pScanline, nX ) ) != cLast )
1175  {
1176  nX++; nCount++;
1177  cLast = cPix;
1178  bFound = true;
1179  }
1180 
1181  if ( bFound )
1182  nX--;
1183 
1184  if ( nCount > 3 )
1185  {
1186  *pTmp++ = 0;
1187  *pTmp++ = static_cast<sal_uInt8>(--nCount);
1188 
1189  if( bRLE4 )
1190  {
1191  for ( sal_uLong i = 0; i < nCount; i++, pTmp++ )
1192  {
1193  *pTmp = rAcc.GetIndexFromData( pScanline, nSaveIndex++ ) << 4;
1194 
1195  if ( ++i < nCount )
1196  *pTmp |= rAcc.GetIndexFromData( pScanline, nSaveIndex++ );
1197  }
1198 
1199  nCount = ( nCount + 1 ) >> 1;
1200  }
1201  else
1202  {
1203  for( sal_uLong i = 0; i < nCount; i++ )
1204  *pTmp++ = rAcc.GetIndexFromData( pScanline, nSaveIndex++ );
1205  }
1206 
1207  if ( nCount & 1 )
1208  {
1209  *pTmp++ = 0;
1210  nBufCount += ( nCount + 3 );
1211  }
1212  else
1213  nBufCount += ( nCount + 2 );
1214  }
1215  else
1216  {
1217  *pTmp++ = 1;
1218  *pTmp++ = rAcc.GetIndexFromData( pScanline, nSaveIndex ) << (bRLE4 ? 4 : 0);
1219 
1220  if ( nCount == 3 )
1221  {
1222  *pTmp++ = 1;
1223  *pTmp++ = rAcc.GetIndexFromData( pScanline, ++nSaveIndex ) << ( bRLE4 ? 4 : 0 );
1224  nBufCount += 4;
1225  }
1226  else
1227  nBufCount += 2;
1228  }
1229  }
1230  }
1231 
1232  aBuf[ nBufCount++ ] = 0;
1233  aBuf[ nBufCount++ ] = 0;
1234 
1235  rOStm.WriteBytes(aBuf.data(), nBufCount);
1236  }
1237 
1238  rOStm.WriteUChar( 0 );
1239  rOStm.WriteUChar( 1 );
1240 
1241  return rOStm.GetError() == ERRCODE_NONE;
1242 }
1243 
1244 bool ImplWriteDIBBits(SvStream& rOStm, BitmapReadAccess const & rAcc, BitmapReadAccess const * pAccAlpha, sal_uLong nCompression, sal_uInt32& rImageSize)
1245 {
1246  if(!pAccAlpha && BITFIELDS == nCompression)
1247  {
1248  const ColorMask& rMask = rAcc.GetColorMask();
1249  SVBT32 aVal32;
1250 
1251  UInt32ToSVBT32( rMask.GetRedMask(), aVal32 );
1252  rOStm.WriteBytes( aVal32, 4UL );
1253 
1254  UInt32ToSVBT32( rMask.GetGreenMask(), aVal32 );
1255  rOStm.WriteBytes( aVal32, 4UL );
1256 
1257  UInt32ToSVBT32( rMask.GetBlueMask(), aVal32 );
1258  rOStm.WriteBytes( aVal32, 4UL );
1259 
1260  rImageSize = rOStm.Tell();
1261 
1262  if( rAcc.IsBottomUp() )
1263  rOStm.WriteBytes(rAcc.GetBuffer(), rAcc.Height() * rAcc.GetScanlineSize());
1264  else
1265  {
1266  for( long nY = rAcc.Height() - 1, nScanlineSize = rAcc.GetScanlineSize(); nY >= 0; nY-- )
1267  rOStm.WriteBytes( rAcc.GetScanline(nY), nScanlineSize );
1268  }
1269  }
1270  else if(!pAccAlpha && ((RLE_4 == nCompression) || (RLE_8 == nCompression)))
1271  {
1272  rImageSize = rOStm.Tell();
1273  ImplWriteRLE( rOStm, rAcc, RLE_4 == nCompression );
1274  }
1275  else if(!nCompression)
1276  {
1277  // #i5xxx# Limit bitcount to 24bit, the 32 bit cases are not
1278  // handled properly below (would have to set color masks, and
1279  // nCompression=BITFIELDS - but color mask is not set for
1280  // formats != *_TC_*). Note that this very problem might cause
1281  // trouble at other places - the introduction of 32 bit RGBA
1282  // bitmaps is relatively recent.
1283  // #i59239# discretize bitcount for aligned width to 1,4,8,24
1284  // (other cases are not written below)
1285  const sal_uInt16 nBitCount(pAccAlpha ? 32 : discretizeBitcount(rAcc.GetBitCount()));
1286  const sal_uLong nAlignedWidth(AlignedWidth4Bytes(rAcc.Width() * nBitCount));
1287  bool bNative(false);
1288 
1289  switch(rAcc.GetScanlineFormat())
1290  {
1295  {
1296  if(!pAccAlpha && rAcc.IsBottomUp() && (rAcc.GetScanlineSize() == nAlignedWidth))
1297  {
1298  bNative = true;
1299  }
1300 
1301  break;
1302  }
1303 
1304  default:
1305  {
1306  break;
1307  }
1308  }
1309 
1310  rImageSize = rOStm.Tell();
1311 
1312  if(bNative)
1313  {
1314  rOStm.WriteBytes(rAcc.GetBuffer(), nAlignedWidth * rAcc.Height());
1315  }
1316  else
1317  {
1318  const long nWidth(rAcc.Width());
1319  const long nHeight(rAcc.Height());
1320  std::vector<sal_uInt8> aBuf(nAlignedWidth);
1321  switch( nBitCount )
1322  {
1323  case 1:
1324  {
1325  //valgrind, zero out the trailing unused alignment bytes
1326  size_t nUnusedBytes = nAlignedWidth - ((nWidth+7) / 8);
1327  memset(aBuf.data() + nAlignedWidth - nUnusedBytes, 0, nUnusedBytes);
1328 
1329  for( long nY = nHeight - 1; nY >= 0; nY-- )
1330  {
1331  sal_uInt8* pTmp = aBuf.data();
1332  sal_uInt8 cTmp = 0;
1333  Scanline pScanline = rAcc.GetScanline( nY );
1334 
1335  for( long nX = 0, nShift = 8; nX < nWidth; nX++ )
1336  {
1337  if( !nShift )
1338  {
1339  nShift = 8;
1340  *pTmp++ = cTmp;
1341  cTmp = 0;
1342  }
1343 
1344  cTmp |= rAcc.GetIndexFromData( pScanline, nX ) << --nShift;
1345  }
1346 
1347  *pTmp = cTmp;
1348  rOStm.WriteBytes(aBuf.data(), nAlignedWidth);
1349  }
1350  }
1351  break;
1352 
1353  case 4:
1354  {
1355  //valgrind, zero out the trailing unused alignment bytes
1356  size_t nUnusedBytes = nAlignedWidth - ((nWidth+1) / 2);
1357  memset(aBuf.data() + nAlignedWidth - nUnusedBytes, 0, nUnusedBytes);
1358 
1359  for( long nY = nHeight - 1; nY >= 0; nY-- )
1360  {
1361  sal_uInt8* pTmp = aBuf.data();
1362  sal_uInt8 cTmp = 0;
1363  Scanline pScanline = rAcc.GetScanline( nY );
1364 
1365  for( long nX = 0, nShift = 2; nX < nWidth; nX++ )
1366  {
1367  if( !nShift )
1368  {
1369  nShift = 2;
1370  *pTmp++ = cTmp;
1371  cTmp = 0;
1372  }
1373 
1374  cTmp |= rAcc.GetIndexFromData( pScanline, nX ) << ( --nShift << 2 );
1375  }
1376  *pTmp = cTmp;
1377  rOStm.WriteBytes(aBuf.data(), nAlignedWidth);
1378  }
1379  }
1380  break;
1381 
1382  case 8:
1383  {
1384  for( long nY = nHeight - 1; nY >= 0; nY-- )
1385  {
1386  sal_uInt8* pTmp = aBuf.data();
1387  Scanline pScanline = rAcc.GetScanline( nY );
1388 
1389  for( long nX = 0; nX < nWidth; nX++ )
1390  *pTmp++ = rAcc.GetIndexFromData( pScanline, nX );
1391 
1392  rOStm.WriteBytes(aBuf.data(), nAlignedWidth);
1393  }
1394  }
1395  break;
1396 
1397  case 24:
1398  {
1399  //valgrind, zero out the trailing unused alignment bytes
1400  size_t nUnusedBytes = nAlignedWidth - nWidth * 3;
1401  memset(aBuf.data() + nAlignedWidth - nUnusedBytes, 0, nUnusedBytes);
1402  }
1403  [[fallthrough]];
1404  // #i59239# fallback to 24 bit format, if bitcount is non-default
1405  default:
1406  {
1407  BitmapColor aPixelColor;
1408  const bool bWriteAlpha(32 == nBitCount && pAccAlpha);
1409 
1410  for( long nY = nHeight - 1; nY >= 0; nY-- )
1411  {
1412  sal_uInt8* pTmp = aBuf.data();
1413  Scanline pScanlineAlpha = bWriteAlpha ? pAccAlpha->GetScanline( nY ) : nullptr;
1414 
1415  for( long nX = 0; nX < nWidth; nX++ )
1416  {
1417  // when alpha is used, this may be non-24bit main bitmap, so use GetColor
1418  // instead of GetPixel to ensure RGB value
1419  aPixelColor = rAcc.GetColor( nY, nX );
1420 
1421  *pTmp++ = aPixelColor.GetBlue();
1422  *pTmp++ = aPixelColor.GetGreen();
1423  *pTmp++ = aPixelColor.GetRed();
1424 
1425  if(bWriteAlpha)
1426  {
1427  *pTmp++ = sal_uInt8(0xff) - pAccAlpha->GetIndexFromData( pScanlineAlpha, nX );
1428  }
1429  }
1430 
1431  rOStm.WriteBytes(aBuf.data(), nAlignedWidth);
1432  }
1433  }
1434  break;
1435  }
1436  }
1437  }
1438 
1439  rImageSize = rOStm.Tell() - rImageSize;
1440 
1441  return (!rOStm.GetError());
1442 }
1443 
1444 bool ImplWriteDIBBody(const Bitmap& rBitmap, SvStream& rOStm, BitmapReadAccess const & rAcc, BitmapReadAccess const * pAccAlpha, bool bCompressed)
1445 {
1446  const MapMode aMapPixel(MapUnit::MapPixel);
1447  DIBV5Header aHeader;
1448  sal_uLong nImageSizePos(0);
1449  sal_uLong nEndPos(0);
1450  sal_uInt32 nCompression(COMPRESS_NONE);
1451  bool bRet(false);
1452 
1453  aHeader.nSize = pAccAlpha ? DIBV5HEADERSIZE : DIBINFOHEADERSIZE; // size dependent on CF_DIB type to use
1454  aHeader.nWidth = rAcc.Width();
1455  aHeader.nHeight = rAcc.Height();
1456  aHeader.nPlanes = 1;
1457 
1458  if(!pAccAlpha && isBitfieldCompression(rAcc.GetScanlineFormat()))
1459  {
1460  aHeader.nBitCount = (ScanlineFormat::N16BitTcLsbMask == rAcc.GetScanlineFormat()) ? 16 : 32;
1461  aHeader.nSizeImage = rAcc.Height() * rAcc.GetScanlineSize();
1462  nCompression = BITFIELDS;
1463  }
1464  else
1465  {
1466  // #i5xxx# Limit bitcount to 24bit, the 32 bit cases are
1467  // not handled properly below (would have to set color
1468  // masks, and nCompression=BITFIELDS - but color mask is
1469  // not set for formats != *_TC_*). Note that this very
1470  // problem might cause trouble at other places - the
1471  // introduction of 32 bit RGBA bitmaps is relatively
1472  // recent.
1473  // #i59239# discretize bitcount to 1,4,8,24 (other cases
1474  // are not written below)
1475  const sal_uInt16 nBitCount(pAccAlpha ? 32 : discretizeBitcount(rAcc.GetBitCount()));
1476  aHeader.nBitCount = nBitCount;
1477  aHeader.nSizeImage = rAcc.Height() * AlignedWidth4Bytes(rAcc.Width() * aHeader.nBitCount);
1478 
1479  if(bCompressed)
1480  {
1481  if(4 == nBitCount)
1482  {
1483  nCompression = RLE_4;
1484  }
1485  else if(8 == nBitCount)
1486  {
1487  nCompression = RLE_8;
1488  }
1489  }
1490  }
1491 
1492  if((rOStm.GetCompressMode() & SvStreamCompressFlags::ZBITMAP) && (rOStm.GetVersion() >= SOFFICE_FILEFORMAT_40))
1493  {
1494  aHeader.nCompression = ZCOMPRESS;
1495  }
1496  else
1497  {
1498  aHeader.nCompression = nCompression;
1499  }
1500 
1501  if(rBitmap.GetPrefSize().Width() && rBitmap.GetPrefSize().Height() && (rBitmap.GetPrefMapMode() != aMapPixel))
1502  {
1503  // #i48108# Try to recover xpels/ypels as previously stored on
1504  // disk. The problem with just converting maPrefSize to 100th
1505  // mm and then relating that to the bitmap pixel size is that
1506  // MapMode is integer-based, and suffers from roundoffs,
1507  // especially if maPrefSize is small. Trying to circumvent
1508  // that by performing part of the math in floating point.
1509  const Size aScale100000(OutputDevice::LogicToLogic(Size(100000, 100000), MapMode(MapUnit::Map100thMM), rBitmap.GetPrefMapMode()));
1510  const double fBmpWidthM(static_cast<double>(rBitmap.GetPrefSize().Width()) / aScale100000.Width());
1511  const double fBmpHeightM(static_cast<double>(rBitmap.GetPrefSize().Height()) / aScale100000.Height());
1512 
1513  if(!basegfx::fTools::equalZero(fBmpWidthM) && !basegfx::fTools::equalZero(fBmpHeightM))
1514  {
1515  aHeader.nXPelsPerMeter = basegfx::fround(rAcc.Width() / fabs(fBmpWidthM));
1516  aHeader.nYPelsPerMeter = basegfx::fround(rAcc.Height() / fabs(fBmpHeightM));
1517  }
1518  }
1519 
1520  aHeader.nColsUsed = ((!pAccAlpha && aHeader.nBitCount <= 8) ? rAcc.GetPaletteEntryCount() : 0);
1521  aHeader.nColsImportant = 0;
1522 
1523  rOStm.WriteUInt32( aHeader.nSize );
1524  rOStm.WriteInt32( aHeader.nWidth );
1525  rOStm.WriteInt32( aHeader.nHeight );
1526  rOStm.WriteUInt16( aHeader.nPlanes );
1527  rOStm.WriteUInt16( aHeader.nBitCount );
1528  rOStm.WriteUInt32( aHeader.nCompression );
1529 
1530  nImageSizePos = rOStm.Tell();
1531  rOStm.SeekRel( sizeof( aHeader.nSizeImage ) );
1532 
1533  rOStm.WriteInt32( aHeader.nXPelsPerMeter );
1534  rOStm.WriteInt32( aHeader.nYPelsPerMeter );
1535  rOStm.WriteUInt32( aHeader.nColsUsed );
1536  rOStm.WriteUInt32( aHeader.nColsImportant );
1537 
1538  if(pAccAlpha) // only write DIBV5 when asked to do so
1539  {
1540  aHeader.nV5CSType = 0x57696E20; // LCS_WINDOWS_COLOR_SPACE
1541  aHeader.nV5Intent = 0x00000004; // LCS_GM_IMAGES
1542 
1543  rOStm.WriteUInt32( aHeader.nV5RedMask );
1544  rOStm.WriteUInt32( aHeader.nV5GreenMask );
1545  rOStm.WriteUInt32( aHeader.nV5BlueMask );
1546  rOStm.WriteUInt32( aHeader.nV5AlphaMask );
1547  rOStm.WriteUInt32( aHeader.nV5CSType );
1548 
1549  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzRed.aXyzX );
1550  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzRed.aXyzY );
1551  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzRed.aXyzZ );
1552  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzGreen.aXyzX );
1553  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzGreen.aXyzY );
1554  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzGreen.aXyzZ );
1555  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzBlue.aXyzX );
1556  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzBlue.aXyzY );
1557  rOStm.WriteInt32( aHeader.aV5Endpoints.aXyzBlue.aXyzZ );
1558 
1559  rOStm.WriteUInt32( aHeader.nV5GammaRed );
1560  rOStm.WriteUInt32( aHeader.nV5GammaGreen );
1561  rOStm.WriteUInt32( aHeader.nV5GammaBlue );
1562  rOStm.WriteUInt32( aHeader.nV5Intent );
1563  rOStm.WriteUInt32( aHeader.nV5ProfileData );
1564  rOStm.WriteUInt32( aHeader.nV5ProfileSize );
1565  rOStm.WriteUInt32( aHeader.nV5Reserved );
1566  }
1567 
1568  if(ZCOMPRESS == aHeader.nCompression)
1569  {
1570  ZCodec aCodec;
1571  SvMemoryStream aMemStm(aHeader.nSizeImage + 4096, 65535);
1572  sal_uLong nCodedPos(rOStm.Tell());
1573  sal_uLong nLastPos(0);
1574  sal_uInt32 nCodedSize(0);
1575  sal_uInt32 nUncodedSize(0);
1576 
1577  // write uncoded data palette
1578  if(aHeader.nColsUsed)
1579  {
1580  ImplWriteDIBPalette(aMemStm, rAcc);
1581  }
1582 
1583  // write uncoded bits
1584  bRet = ImplWriteDIBBits(aMemStm, rAcc, pAccAlpha, nCompression, aHeader.nSizeImage);
1585 
1586  // get uncoded size
1587  nUncodedSize = aMemStm.Tell();
1588 
1589  // seek over compress info
1590  rOStm.SeekRel(12);
1591 
1592  // write compressed data
1593  aCodec.BeginCompression(3);
1594  aCodec.Write(rOStm, static_cast<sal_uInt8 const *>(aMemStm.GetData()), nUncodedSize);
1595  aCodec.EndCompression();
1596 
1597  // update compress info ( coded size, uncoded size, uncoded compression )
1598  nLastPos = rOStm.Tell();
1599  nCodedSize = nLastPos - nCodedPos - 12;
1600  rOStm.Seek(nCodedPos);
1601  rOStm.WriteUInt32( nCodedSize ).WriteUInt32( nUncodedSize ).WriteUInt32( nCompression );
1602  rOStm.Seek(nLastPos);
1603 
1604  if(bRet)
1605  {
1606  bRet = (ERRCODE_NONE == rOStm.GetError());
1607  }
1608  }
1609  else
1610  {
1611  if(aHeader.nColsUsed)
1612  {
1613  ImplWriteDIBPalette(rOStm, rAcc);
1614  }
1615 
1616  bRet = ImplWriteDIBBits(rOStm, rAcc, pAccAlpha, aHeader.nCompression, aHeader.nSizeImage);
1617  }
1618 
1619  nEndPos = rOStm.Tell();
1620  rOStm.Seek(nImageSizePos);
1621  rOStm.WriteUInt32( aHeader.nSizeImage );
1622  rOStm.Seek(nEndPos);
1623 
1624  return bRet;
1625 }
1626 
1627 bool ImplWriteDIBFileHeader(SvStream& rOStm, BitmapReadAccess const & rAcc)
1628 {
1629  const sal_uInt32 nPalCount((rAcc.HasPalette() ? rAcc.GetPaletteEntryCount() : isBitfieldCompression(rAcc.GetScanlineFormat()) ? 3UL : 0UL));
1630  const sal_uInt32 nOffset(14 + DIBINFOHEADERSIZE + nPalCount * 4UL);
1631 
1632  rOStm.WriteUInt16( 0x4D42 ); // 'MB' from BITMAPFILEHEADER
1633  rOStm.WriteUInt32( nOffset + (rAcc.Height() * rAcc.GetScanlineSize()) );
1634  rOStm.WriteUInt16( 0 );
1635  rOStm.WriteUInt16( 0 );
1636  rOStm.WriteUInt32( nOffset );
1637 
1638  return rOStm.GetError() == ERRCODE_NONE;
1639 }
1640 
1641 bool ImplReadDIB(
1642  Bitmap& rTarget,
1643  AlphaMask* pTargetAlpha,
1644  SvStream& rIStm,
1645  bool bFileHeader,
1646  bool bIsMask=false,
1647  bool bMSOFormat=false)
1648 {
1649  const SvStreamEndian nOldFormat(rIStm.GetEndian());
1650  const sal_uLong nOldPos(rIStm.Tell());
1651  sal_uLong nOffset(0);
1652  bool bRet(false);
1653 
1654  rIStm.SetEndian(SvStreamEndian::LITTLE);
1655 
1656  if(bFileHeader)
1657  {
1658  if(ImplReadDIBFileHeader(rIStm, nOffset))
1659  {
1660  bRet = ImplReadDIBBody(rIStm, rTarget, nOffset >= DIBV5HEADERSIZE ? pTargetAlpha : nullptr, nOffset, bIsMask, bMSOFormat);
1661  }
1662  }
1663  else
1664  {
1665  bRet = ImplReadDIBBody(rIStm, rTarget, nullptr, nOffset, bIsMask, bMSOFormat);
1666  }
1667 
1668  if(!bRet)
1669  {
1670  if(!rIStm.GetError())
1671  {
1673  }
1674 
1675  rIStm.Seek(nOldPos);
1676  }
1677 
1678  rIStm.SetEndian(nOldFormat);
1679 
1680  return bRet;
1681 }
1682 
1683 bool ImplWriteDIB(
1684  const Bitmap& rSource,
1685  SvStream& rOStm,
1686  bool bCompressed,
1687  bool bFileHeader)
1688 {
1689  const Size aSizePix(rSource.GetSizePixel());
1690  bool bRet(false);
1691 
1692  if(aSizePix.Width() && aSizePix.Height())
1693  {
1694  Bitmap::ScopedReadAccess pAcc(const_cast< Bitmap& >(rSource));
1695  Bitmap::ScopedReadAccess pAccAlpha;
1696  const SvStreamEndian nOldFormat(rOStm.GetEndian());
1697  const sal_uLong nOldPos(rOStm.Tell());
1698 
1699  rOStm.SetEndian(SvStreamEndian::LITTLE);
1700 
1701  if (pAcc)
1702  {
1703  if(bFileHeader)
1704  {
1705  if(ImplWriteDIBFileHeader(rOStm, *pAcc))
1706  {
1707  bRet = ImplWriteDIBBody(rSource, rOStm, *pAcc, pAccAlpha.get(), bCompressed);
1708  }
1709  }
1710  else
1711  {
1712  bRet = ImplWriteDIBBody(rSource, rOStm, *pAcc, pAccAlpha.get(), bCompressed);
1713  }
1714 
1715  pAcc.reset();
1716  }
1717 
1718  pAccAlpha.reset();
1719 
1720  if(!bRet)
1721  {
1723  rOStm.Seek(nOldPos);
1724  }
1725 
1726  rOStm.SetEndian(nOldFormat);
1727  }
1728 
1729  return bRet;
1730 }
1731 
1732 } // unnamed namespace
1733 
1734 bool ReadDIB(
1735  Bitmap& rTarget,
1736  SvStream& rIStm,
1737  bool bFileHeader,
1738  bool bMSOFormat)
1739 {
1740  return ImplReadDIB(rTarget, nullptr, rIStm, bFileHeader, false, bMSOFormat);
1741 }
1742 
1744  BitmapEx& rTarget,
1745  SvStream& rIStm,
1746  bool bFileHeader,
1747  bool bMSOFormat)
1748 {
1749  Bitmap aBmp;
1750  bool bRetval(ImplReadDIB(aBmp, nullptr, rIStm, bFileHeader, /*bMask*/false, bMSOFormat) && !rIStm.GetError());
1751 
1752  if(bRetval)
1753  {
1754  // base bitmap was read, set as return value and try to read alpha extra-data
1755  const sal_uLong nStmPos(rIStm.Tell());
1756  sal_uInt32 nMagic1(0);
1757  sal_uInt32 nMagic2(0);
1758 
1759  rTarget = BitmapEx(aBmp);
1760  rIStm.ReadUInt32( nMagic1 ).ReadUInt32( nMagic2 );
1761  bRetval = (0x25091962 == nMagic1) && (0xACB20201 == nMagic2) && !rIStm.GetError();
1762 
1763  if(bRetval)
1764  {
1765  sal_uInt8 tmp = 0;
1766  rIStm.ReadUChar( tmp );
1767  TransparentType transparent = static_cast<TransparentType>(tmp);
1768  bRetval = !rIStm.GetError();
1769 
1770  if(bRetval)
1771  {
1772  switch (transparent)
1773  {
1775  {
1776  Bitmap aMask;
1777 
1778  bRetval = ImplReadDIB(aMask, nullptr, rIStm, true, true);
1779 
1780  if(bRetval)
1781  {
1782  if(!!aMask)
1783  {
1784  // do we have an alpha mask?
1785  if((8 == aMask.GetBitCount()) && aMask.HasGreyPalette())
1786  {
1787  AlphaMask aAlpha;
1788 
1789  // create alpha mask quickly (without greyscale conversion)
1790  aAlpha.ImplSetBitmap(aMask);
1791  rTarget = BitmapEx(aBmp, aAlpha);
1792  }
1793  else
1794  {
1795  rTarget = BitmapEx(aBmp, aMask);
1796  }
1797  }
1798  }
1799  break;
1800  }
1802  {
1803  Color aTransparentColor;
1804 
1805  tools::GenericTypeSerializer aSerializer(rIStm);
1806  aSerializer.readColor(aTransparentColor);
1807 
1808  bRetval = !rIStm.GetError();
1809 
1810  if(bRetval)
1811  {
1812  rTarget = BitmapEx(aBmp, aTransparentColor);
1813  }
1814  break;
1815  }
1816  default: break;
1817  }
1818  }
1819  }
1820 
1821  if(!bRetval)
1822  {
1823  // alpha extra data could not be read; reset, but use base bitmap as result
1824  rIStm.ResetError();
1825  rIStm.Seek(nStmPos);
1826  bRetval = true;
1827  }
1828  }
1829 
1830  return bRetval;
1831 }
1832 
1834  Bitmap& rTarget,
1835  AlphaMask& rTargetAlpha,
1836  SvStream& rIStm)
1837 {
1838  return ImplReadDIB(rTarget, &rTargetAlpha, rIStm, true);
1839 }
1840 
1842  BitmapEx& rTarget,
1843  const unsigned char* pBuf,
1844  const ScanlineFormat nFormat,
1845  const int nHeight,
1846  const int nStride)
1847 {
1848  BitmapScopedWriteAccess pWriteAccess(rTarget.maBitmap.AcquireWriteAccess(), rTarget.maBitmap);
1849  for (int nRow = 0; nRow < nHeight; ++nRow)
1850  {
1851  pWriteAccess->CopyScanline(nRow, pBuf + (nStride * nRow), nFormat, nStride);
1852  }
1853 
1854  return true;
1855 }
1856 
1858  const Bitmap& rSource,
1859  SvStream& rOStm,
1860  bool bCompressed,
1861  bool bFileHeader)
1862 {
1863  return ImplWriteDIB(rSource, rOStm, bCompressed, bFileHeader);
1864 }
1865 
1867  const BitmapEx& rSource,
1868  SvStream& rOStm,
1869  bool bCompressed)
1870 {
1871  return ImplWriteDIB(rSource.GetBitmapRef(), rOStm, bCompressed, /*bFileHeader*/true);
1872 }
1873 
1875  const BitmapEx& rSource,
1876  SvStream& rOStm)
1877 {
1878  if(ImplWriteDIB(rSource.GetBitmap(), rOStm, true, true))
1879  {
1880  rOStm.WriteUInt32( 0x25091962 );
1881  rOStm.WriteUInt32( 0xACB20201 );
1882  rOStm.WriteUChar( static_cast<sal_uChar>(rSource.meTransparent) );
1883 
1884  if(TransparentType::Bitmap == rSource.meTransparent)
1885  {
1886  return ImplWriteDIB(rSource.maMask, rOStm, true, true);
1887  }
1888  else if(TransparentType::Color == rSource.meTransparent)
1889  {
1890  tools::GenericTypeSerializer aSerializer(rOStm);
1891  aSerializer.writeColor(rSource.maTransparentColor);
1892  return true;
1893  }
1894  }
1895 
1896  return false;
1897 }
1898 
1900 {
1901  return DIBV5HEADERSIZE;
1902 }
1903 
1904 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */
long Width() const
sal_uInt32 getDIBV5HeaderSize()
Definition: dibtools.cxx:1899
SvStream & ReadInt16(sal_Int16 &rInt16)
Scanline GetBuffer() const
void BeginCompression(int nCompressLevel=ZCODEC_DEFAULT_COMPRESSION, bool updateCrc=false, bool gzLib=false)
void GetColorAndAlphaFor32Bit(BitmapColor &rColor, sal_uInt8 &rAlpha, const sal_uInt8 *pPixel) const
Definition: ColorMask.hxx:187
bool ReadDIB(Bitmap &rTarget, SvStream &rIStm, bool bFileHeader, bool bMSOFormat)
Definition: dibtools.cxx:1734
sal_uInt8 GetRed() const
void SetBlue(sal_uInt8 nBlue)
SvStream & WriteUInt16(sal_uInt16 nUInt16)
sal_uInt32 AlignedWidth4Bytes(sal_uInt32 nWidthBits)
Scanline GetScanline(long nY) const
const char aData[]
void SetEntryCount(sal_uInt16 nCount)
SvStream & WriteInt32(sal_Int32 nInt32)
Bitmap maMask
Definition: bitmapex.hxx:481
SvStream & ReadUInt16(sal_uInt16 &rUInt16)
Point LogicToLogic(const Point &rPtSource, const MapMode *pMapModeSource, const MapMode *pMapModeDest) const
Definition: map.cxx:1678
sal_uInt32 GetRedMask() const
Definition: ColorMask.hxx:123
long Height() const
sal_Int32 GetVersion() const
TransparentType
Definition: bitmapex.hxx:36
bool IsGreyPalette() const
virtual sal_uInt64 TellEnd()
sal_uIntPtr sal_uLong
sal_uInt8 GetLuminance() const
sal_uInt16 GetBitCount() const
aBuf
sal_uInt64 Seek(sal_uInt64 nPos)
SAL_DLLPRIVATE void ImplSetBitmap(const Bitmap &rBitmap)
Definition: alpha.cxx:63
Size GetSizePixel() const
long Width() const
SvStreamCompressFlags GetCompressMode() const
sal_uInt64 SeekRel(sal_Int64 nPos)
sal_uInt8 SVBT32[4]
const Size & GetPrefSize() const
Definition: bitmap.hxx:566
#define DIBINFOHEADERSIZE
Definition: dibtools.cxx:40
#define SAL_MAX_UINT32
ScanlineFormat
Definition: Scanline.hxx:28
ErrCode GetError() const
long EndCompression()
bool ReadDIBBitmapEx(BitmapEx &rTarget, SvStream &rIStm, bool bFileHeader, bool bMSOFormat)
Definition: dibtools.cxx:1743
static bool IsFuzzing()
void GetColorFor16BitLSB(BitmapColor &rColor, const sal_uInt8 *pPixel) const
Definition: ColorMask.hxx:164
SvStream & WriteUInt32(sal_uInt32 nUInt32)
void SetPixelOnData(sal_uInt8 *pData, long nX, const BitmapColor &rBitmapColor)
#define RLE_8
Definition: dibtools.hxx:35
sal_uInt64 remainingSize()
sal_uInt8 GetBlue() const
B2IRange fround(const B2DRange &rRange)
Bitmap GetBitmap(const Color *pTransReplaceColor=nullptr) const
Definition: bitmapex.cxx:236
SvStream & ReadUInt32(sal_uInt32 &rUInt32)
const MapMode & GetPrefMapMode() const
Definition: bitmap.hxx:556
sal_uInt16 GetEntryCount() const
void SetPrefMapMode(const MapMode &rMapMode)
Definition: bitmap.hxx:561
#define RLE_4
Definition: dibtools.hxx:36
Bitmap maBitmap
Definition: bitmapex.hxx:480
sal_uInt8 * Scanline
Definition: Scanline.hxx:25
bool checkSeek(SvStream &rSt, sal_uInt64 nOffset)
bool WriteDIBBitmapEx(const BitmapEx &rSource, SvStream &rOStm)
Definition: dibtools.cxx:1874
sal_uInt32 GetScanlineSize() const
#define COMPRESS_NONE
Definition: dibtools.hxx:34
bool HasPalette() const
ScanlineFormat GetScanlineFormat() const
bool CalcMaskShift()
Definition: ColorMask.hxx:58
int i
static bool equalZero(const double &rfVal)
#define SAL_MIN_INT32
std::size_t WriteBytes(const void *pData, std::size_t nSize)
std::enable_if< std::is_signed< T >::value, bool >::type checked_multiply(T a, T b, T &result)
void SetRed(sal_uInt8 nRed)
void SetPrefSize(const Size &rSize)
Definition: bitmap.hxx:571
void SetError(ErrCode nErrorCode)
bool ReadDIBV5(Bitmap &rTarget, AlphaMask &rTargetAlpha, SvStream &rIStm)
Definition: dibtools.cxx:1833
SvStream & ReadUChar(unsigned char &rChar)
SvStream & WriteStream(SvStream &rStream)
#define ZCOMPRESS
Definition: dibtools.hxx:38
sal_uInt16 GetPaletteEntryCount() const
SvStream & ReadInt32(sal_Int32 &rInt32)
ColorMask & GetColorMask() const
std::size_t ReadBytes(void *pData, std::size_t nSize)
sal_uInt8 GetGreen() const
float v
SvStreamEndian GetEndian() const
bool HasGreyPalette() const
sal_Int32 FXPT2DOT30
Definition: dibtools.cxx:45
const Bitmap & GetBitmapRef() const
Gives direct access to the contained bitmap.
Definition: bitmapex.cxx:231
#define SOFFICE_FILEFORMAT_40
long Height() const
#define SAL_WARN_IF(condition, area, stream)
#define ERRCODE_NONE
Definition: errcode.hxx:198
long Read(SvStream &rIStm, sal_uInt8 *pData, sal_uInt32 nSize)
unsigned char sal_uInt8
BitmapColor GetColor(long nY, long nX) const
void SetGreen(sal_uInt8 nGreen)
void SetEndian(SvStreamEndian SvStreamEndian)
SvStream & WriteUChar(unsigned char nChar)
#define SVSTREAM_FILEFORMAT_ERROR
Definition: errcode.hxx:262
BitmapWriteAccess * AcquireWriteAccess()
sal_uInt64 Tell() const
bool IsBottomUp() const
sal_uInt32 GetBlueMask() const
Definition: ColorMask.hxx:133
TransparentType meTransparent
Definition: bitmapex.hxx:484
#define DIBV5HEADERSIZE
Definition: dibtools.cxx:41
void GetColorFor32Bit(BitmapColor &rColor, const sal_uInt8 *pPixel) const
Definition: ColorMask.hxx:179
bool good() const
vcl::ScopedBitmapAccess< BitmapWriteAccess, AlphaMask,&AlphaMask::AcquireAlphaWriteAccess > AlphaScopedWriteAccess
#define SAL_WARN(area, stream)
SvStreamEndian
const BitmapColor & GetPaletteColor(sal_uInt16 nColor) const
sal_uInt32 GetGreenMask() const
Definition: ColorMask.hxx:128
virtual void ResetError()
sal_uInt16 GetBitCount() const
#define BITFIELDS
Definition: dibtools.hxx:37
bool WriteDIB(const Bitmap &rSource, SvStream &rOStm, bool bCompressed, bool bFileHeader)
Definition: dibtools.cxx:1857
void writeColor(const Color &rColor)
#define SVSTREAM_GENERALERROR
Definition: errcode.hxx:242
Color maTransparentColor
Definition: bitmapex.hxx:483
#define DIBCOREHEADERSIZE
Definition: dibtools.cxx:39
bool ReadRawDIB(BitmapEx &rTarget, const unsigned char *pBuf, const ScanlineFormat nFormat, const int nHeight, const int nStride)
Definition: dibtools.cxx:1841
void Write(SvStream &rOStm, const sal_uInt8 *pData, sal_uInt32 nSize)
const void * GetData()
void readColor(Color &rColor)
sal_uInt8 GetIndexFromData(const sal_uInt8 *pData, long nX) const