23 nTemp = p1T[nX++] >> 12; \
24 nBErr = MinMax( nTemp, 0, 255 ); \
25 nBErr = nBErr - FloydIndexMap[ nBC = FloydMap[nBErr] ]; \
26 nTemp = p1T[nX++] >> 12; \
27 nGErr = MinMax( nTemp, 0, 255 ); \
28 nGErr = nGErr - FloydIndexMap[ nGC = FloydMap[nGErr] ]; \
29 nTemp = p1T[nX] >> 12; \
30 nRErr = MinMax( nTemp, 0, 255 ); \
31 nRErr = nRErr - FloydIndexMap[ nRC = FloydMap[nRErr] ];
34 p2T[nX++] += FloydError3[nBErr]; \
35 p2T[nX++] += FloydError3[nGErr]; \
36 p2T[nX++] += FloydError3[nRErr];
39 p2T[nX++] += FloydError5[nBErr]; \
40 p2T[nX++] += FloydError5[nGErr]; \
41 p2T[nX++] += FloydError5[nRErr];
44 p1T[++nX] += FloydError7[nBErr]; \
45 p2T[nX++] += FloydError1[nBErr]; \
46 p1T[nX] += FloydError7[nGErr]; \
47 p2T[nX++] += FloydError1[nGErr]; \
48 p1T[nX] += FloydError7[nRErr]; \
49 p2T[nX] += FloydError1[nRErr];
57 0, 49152, 12288, 61440, 3072, 52224, 15360, 64512, 768, 49920, 13056,
58 62208, 3840, 52992, 16128, 65280, 32768, 16384, 45056, 28672, 35840, 19456,
59 48128, 31744, 33536, 17152, 45824, 29440, 36608, 20224, 48896, 32512, 8192,
60 57344, 4096, 53248, 11264, 60416, 7168, 56320, 8960, 58112, 4864, 54016,
61 12032, 61184, 7936, 57088, 40960, 24576, 36864, 20480, 44032, 27648, 39936,
62 23552, 41728, 25344, 37632, 21248, 44800, 28416, 40704, 24320, 2048, 51200,
63 14336, 63488, 1024, 50176, 13312, 62464, 2816, 51968, 15104, 64256, 1792,
64 50944, 14080, 63232, 34816, 18432, 47104, 30720, 33792, 17408, 46080, 29696,
65 35584, 19200, 47872, 31488, 34560, 18176, 46848, 30464, 10240, 59392, 6144,
66 55296, 9216, 58368, 5120, 54272, 11008, 60160, 6912, 56064, 9984, 59136,
67 5888, 55040, 43008, 26624, 38912, 22528, 41984, 25600, 37888, 21504, 43776,
68 27392, 39680, 23296, 42752, 26368, 38656, 22272, 512, 49664, 12800, 61952,
69 3584, 52736, 15872, 65024, 256, 49408, 12544, 61696, 3328, 52480, 15616,
70 64768, 33280, 16896, 45568, 29184, 36352, 19968, 48640, 32256, 33024, 16640,
71 45312, 28928, 36096, 19712, 48384, 32000, 8704, 57856, 4608, 53760, 11776,
72 60928, 7680, 56832, 8448, 57600, 4352, 53504, 11520, 60672, 7424, 56576,
73 41472, 25088, 37376, 20992, 44544, 28160, 40448, 24064, 41216, 24832, 37120,
74 20736, 44288, 27904, 40192, 23808, 2560, 51712, 14848, 64000, 1536, 50688,
75 13824, 62976, 2304, 51456, 14592, 63744, 1280, 50432, 13568, 62720, 35328,
76 18944, 47616, 31232, 34304, 17920, 46592, 30208, 35072, 18688, 47360, 30976,
77 34048, 17664, 46336, 29952, 10752, 59904, 6656, 55808, 9728, 58880, 5632,
78 54784, 10496, 59648, 6400, 55552, 9472, 58624, 5376, 54528, 43520, 27136,
79 39424, 23040, 42496, 26112, 38400, 22016, 43264, 26880, 39168, 22784, 42240,
85 0, 1286, 2572, 3858, 5144, 6430, 7716, 9002,
86 10288, 11574, 12860, 14146, 15432, 16718, 18004, 19290,
87 20576, 21862, 23148, 24434, 25720, 27006, 28292, 29578,
88 30864, 32150, 33436, 34722, 36008, 37294, 38580, 39866,
89 41152, 42438, 43724, 45010, 46296, 47582, 48868, 50154,
90 51440, 52726, 54012, 55298, 56584, 57870, 59156, 60442,
91 61728, 63014, 64300, 65586, 66872, 68158, 69444, 70730,
92 72016, 73302, 74588, 75874, 77160, 78446, 79732, 81018,
93 82304, 83590, 84876, 86162, 87448, 88734, 90020, 91306,
94 92592, 93878, 95164, 96450, 97736, 99022,100308,101594,
95 102880,104166,105452,106738,108024,109310,110596,111882,
96 113168,114454,115740,117026,118312,119598,120884,122170,
97 123456,124742,126028,127314,128600,129886,131172,132458,
98 133744,135030,136316,137602,138888,140174,141460,142746,
99 144032,145318,146604,147890,149176,150462,151748,153034,
100 154320,155606,156892,158178,159464,160750,162036,163322,
101 164608,165894,167180,168466,169752,171038,172324,173610,
102 174896,176182,177468,178754,180040,181326,182612,183898,
103 185184,186470,187756,189042,190328,191614,192900,194186,
104 195472,196758,198044,199330,200616,201902,203188,204474,
105 205760,207046,208332,209618,210904,212190,213476,214762,
106 216048,217334,218620,219906,221192,222478,223764,225050,
107 226336,227622,228908,230194,231480,232766,234052,235338,
108 236624,237910,239196,240482,241768,243054,244340,245626,
109 246912,248198,249484,250770,252056,253342,254628,255914,
110 257200,258486,259772,261058,262344,263630,264916,266202,
111 267488,268774,270060,271346,272632,273918,275204,276490,
112 277776,279062,280348,281634,282920,284206,285492,286778,
113 288064,289350,290636,291922,293208,294494,295780,297066,
114 298352,299638,300924,302210,303496,304782,306068,307354,
115 308640,309926,311212,312498,313784,315070,316356,317642,
116 318928,320214,321500,322786,324072,325358,326644,327930
121 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
122 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
123 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
124 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
125 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
126 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
127 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
128 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
129 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
130 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
131 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
132 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
133 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
134 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
135 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
136 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
141 -7680, -7424, -7168, -6912, -6656, -6400, -6144,
142 -5888, -5632, -5376, -5120, -4864, -4608, -4352,
143 -4096, -3840, -3584, -3328, -3072, -2816, -2560,
144 -2304, -2048, -1792, -1536, -1280, -1024, -768,
145 -512, -256, 0, 256, 512, 768, 1024, 1280, 1536,
146 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584,
147 3840, 4096, 4352, 4608, 4864, 5120, 5376, 5632,
148 5888, 6144, 6400, 6656, 6912, 7168, 7424, 7680
153 -23040, -22272, -21504, -20736, -19968, -19200,
154 -18432, -17664, -16896, -16128, -15360, -14592,
155 -13824, -13056, -12288, -11520, -10752, -9984,
156 -9216, -8448, -7680, -6912, -6144, -5376, -4608,
157 -3840, -3072, -2304, -1536, -768, 0, 768, 1536,
158 2304, 3072, 3840, 4608, 5376, 6144, 6912, 7680,
159 8448, 9216, 9984, 10752, 11520, 12288, 13056,
160 13824, 14592, 15360, 16128, 16896, 17664, 18432,
161 19200, 19968, 20736, 21504, 22272, 23040
166 -38400, -37120, -35840, -34560, -33280, -32000,
167 -30720, -29440, -28160, -26880, -25600, -24320,
168 -23040, -21760, -20480, -19200, -17920, -16640,
169 -15360, -14080, -12800, -11520, -10240, -8960,
170 -7680, -6400, -5120, -3840, -2560, -1280, 0,
171 1280, 2560, 3840, 5120, 6400, 7680, 8960, 10240,
172 11520, 12800, 14080, 15360, 16640, 17920, 19200,
173 20480, 21760, 23040, 24320, 25600, 26880, 28160,
174 29440, 30720, 32000, 33280, 34560, 35840, 37120,
180 -53760, -51968, -50176, -48384, -46592, -44800,
181 -43008, -41216, -39424, -37632, -35840, -34048,
182 -32256, -30464, -28672, -26880, -25088, -23296,
183 -21504, -19712, -17920, -16128, -14336, -12544,
184 -10752, -8960, -7168, -5376, -3584, -1792, 0,
185 1792, 3584, 5376, 7168, 8960, 10752, 12544, 14336,
186 16128, 17920, 19712, 21504, 23296, 25088, 26880,
187 28672, 30464, 32256, 34048, 35840, 37632, 39424,
188 41216, 43008, 44800, 46592, 48384, 50176, 51968,
194 -30, 21, 72, 123, 174, 225
const tools::Long FloydError7[61]
const sal_uLong nVCLLut[256]
const tools::Long FloydMap[256]
const tools::Long FloydError1[61]
const sal_uLong nVCLBLut[6]
const tools::Long FloydError5[61]
const sal_uLong nVCLGLut[6]
const tools::Long FloydError3[61]
const tools::Long FloydIndexMap[6]
const sal_uLong nVCLRLut[6]
const sal_uLong nVCLDitherLut[256]